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Abstract

An analytical method is presented based on an inclusion analogy for determining the thermal residual stresses in

an isotropic plate reinforced with a circular orthotropic patch. Explicit formulae are obtained for both the elastic
properties and the thermal expansion coe�cients of the equivalent inclusion. Exact solutions are derived for the
thermal stresses in a circular orthotropic composite reinforcement bonded to an isotropic plate. To quantify the

®nite size e�ect, approximate solutions have also been obtained for a circular plate reinforced by a concentric
circular patch. The present solutions are compared with ®nite element results, demonstrating a very good agreement
with the numerical results. These explicit solutions provide a convenient tool for evaluating the residual thermal
stresses when designing bonded repairs. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bonded composite patch repair involves ®rstly heating the local area being patched above the ambient
temperature, and subsequently cooling the fully cured patch, which can be regarded as rigidly bonded to

the structure, to the ambient temperature. For instance, in a typical repair applied to aircraft structures
the reinforced region is initially heated to a temperature of approximately 100±1208C, under pressure,
for approximately one hour and then cooled down to the ambient temperature after the adhesive is

cured (Baker, 1988; Rose, 1988). Due to the di�erences between the elastic properties and the thermal
expansion properties of the composite patch and the metal plate, thermal residual stresses may arise. It
has long been recognised that in some instances the thermal residual stresses represent a serious concern

to the repair e�ciency of composite patch repair. This is because the residual stresses in the metal plate
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are almost inevitably tensile owing to the lower thermal expansion coe�cient of the composite patch. In
the case of crack patching, where a composite patch is bonded to a cracked structure, this tensile
residual stress would translate into a positive mean stress-intensity factor, promoting faster crack
growth.

Due to the complexity of the problem of analysing the cooling of fully cured patch subjected to the
constraint of the surrounding material, studies to date have been concerned mainly with isotropic
patches (Rose, 1988; Baker, 1988; Callinan et al., 1997). However, composite patches employed in
repairing aircraft structures, such as unidirectional boron composite patches, are strongly orthotropic
with vastly di�erent elastic moduli and thermal expansion coe�cients in di�erent directions. Therefore,
assuming the composite patch as an isotropic material may result in erroneous estimate of the thermal
residual stresses.

The purpose of this article is to present a closed form solution for the thermal stresses resulting from
the two steps of bonding a circular patch bonded on an in®nite plate. The thermal stresses due to the
®rst step (heating of the region to be repaired) can be readily determined using known results, which
will be brie¯y outlined in Section 2. The emphasis of this article is on the thermal stresses induced by
the second step: cooling of a plate reinforced with an orthotropic patch. The present analysis is
facilitated by the known results of ellipsoidal inclusions (Eshelby, 1957). The problem is analysed with
the help of imaginary cutting, straining and welding operations, in the spirit of the inclusion analogy by
Eshelby (1957). The patched region (patch and plate) is modelled as an equivalent inclusion. The elastic
properties and the thermal expansion coe�cients of the equivalent inclusion are presented in Section 3.

To determine the thermal stresses developed in the patch and the plate, the patched region is ®rst cut
out from the plate, and then surface tractions of equal magnitude but opposite in sign are applied,
respectively around the outer edge of the cut region and the hole in the plate. The unknown tractions
are determined by closing the `gap' between the patch and the hole; in doing so, continuity in both the
tractions and displacement across the imaginary cut has to be satis®ed simultaneously. As anticipated
from the known results for the ellipsoidal inclusion, the stresses in the patch and the plate directly
beneath the patch are uniform, provided that the temperature in the reinforced region is uniform. This
special feature of ellipsoidal inclusions greatly simpli®es the strategy for deriving an explicit solution;
detailed derivations are presented in Section 4.

To quantify the ®nite size e�ect on the thermal stresses, an approximate solution is presented in
Section 5, which is expected to provide good estimate of the thermal stresses in a circular plate
reinforced with a concentric patch whose diameter is relatively smaller than that of the plate. The newly
developed solutions have been validated using a ®nite element method. The main advantage of the
present solutions over numerical methods such as the ®nite element method is the ability to account for
the large number of parameters that a�ect the residual stresses. Therefore, the present solutions provide
a convenient tool for the design and analysis of bonded repairs.

2. Problem description

The problem to be analysed can be idealised as a plate of uniform thickness 2t, referring to Fig. 1,
which is reinforced by two identical patches placed directly opposite one another across the plate, with
one patch bonded to each face of the plate. The symmetry of this con®guration ensures that no out-of-
plane de¯ection will occur due to the thermal residual stresses. The issue of out-of-plane bending
pertaining to one-sided repair will be addressed separately. To simplify the problem we can imagine the
plate cut along its mid-plane and consider a plate of thickness t with a single reinforcement of thickness
tR bonded on one side. Following the usual conventions for bonded repairs, parameters pertaining to
the reinforcement will be distinguished by a subscript or superscript R.
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Consider the con®guration shown in Fig. 1, in which a plate is reinforced by a circular patch of
radius Ri: The coordinate system xy is chosen so that the principal axes of the orthotropic patch are
aligned and parallel to the x-, y-axes, with the major direction along the x-axis. During the ®rst step of
bonding, suppose that the inner portion �r < Ri� is heated to a temperature Ti during the curing process,
while the temperature at rrRo is heated to To, with the usual convention that the ambient temperature
is taken as the zero of temperature. The temperature ®eld satis®es the Laplacian equation,

r 2T � 0 �1�
which has the following solution,

T H�r� �

8>>><>>>:
Ti r < Ri

To � �Ti ÿ To� ln�r=Ro�
ln�Ri=Ro� Ri < r < Ro

To Ro < r

�2�

Fig. 1. An in®nite plate reinforced with a circular composite patch; (a) notations and coordinate, (b) cross-sectional view.
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where the superscript H denotes the temperature change corresponding to the ®rst step: heating. A
schematic of the temperature distribution is shown in Fig. 2. Due to this non-uniform temperature
distribution, thermal stresses develop in the plate, which can be readily derived (Timoshenko and
Goodier, 1970, Section 150, pp. 441±443),

sxx � syy � ÿ1
2
aE�Ti ÿ To� �3�

where a and E denote the thermal expansion coe�cient and Young's modulus of the plate. Since Ti ÿ
To > 0 during heating, the above thermal initial stress is compressive, as expected. It should be noted
that this thermal stress arises only in the case of localised heating of a large structure; for the case of a
®nite size specimen being uniformly heated to Ti, no thermal stress will develop. This stress distribution
serves as the initial stress that will be added to the thermal stress induced by cooling the patched region
down to the ambient temperature.

For the second step of adhesive bonding we assume that there is no shear stress in the adhesive layer
during curing, so that the reinforcing patch expands freely without developing any stresses. After the
adhesive is fully cured, the patched plate is then cooled down to the ambient temperature. In other
words, the temperature change over the entire patched plate is subjected to the following temperature
®eld, referring to Fig. 2,

T C�r� � ÿT H�r� �4�
where the superscript C denotes the temperature change corresponding to the second step: cooling.
During this cooling process, it is assumed that the adhesive bond between the composite patch and the
metal plate is absolutely rigid, so that the same strain state prevails in both the patch and the plate
directly beneath the patch.

Due to anisotropy of the composite patch, the cooling step can no longer be modelled as an
axisymmetric problem like in the case of an isotropic patch (Rose, 1988). However, in view of Eshelby's
(Eshelby, 1957) results for ellipsoidal inclusions, it is reasonable to anticipate that the thermal stresses
are uniform throughout the patched region, including the patch and the plate beneath the patch. Then
this stress state can be determined with the help of a simple set of imaginary cutting, straining and
welding operations, and by imposing requirements of traction and displacement continuity. The ability
to satisfy these requirements con®rms the correctness of the postulate of uniform stress.

Fig. 2. Temperature distribution during heating and cooling.
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3. Inclusion analogy

For convenience, the plate is divided into an inner region �r < Ri� lying under the reinforcement, and
an outer region �r > Ri). The patch and the inner region of the plate are together called an `inclusion'.
In the following, the equivalent properties of the inclusion will be ®rst determined so that the reinforced
region can be replaced with an equivalent inclusion without altering the stress or displacement. Here
and in the following the superscript I will be used to distinguish parameters pertaining to the inclusion.

Due to the expectation of uniform stress and the fact of symmetry with respect to the x- and y-axes,
the shear stress txy is zero everywhere within the patched region. This implies that the boundary
tractions along the outer edge of the patched region is equivalent to a yet unknown but uniform stress-
state of sxx � p and syy � q: The stress±strain relations for an orthotropic plate can be expressed as

�
exx
eyy

�
�

26664
1

E1
ÿn12
E1

ÿn21
E2

1

E2

37775
�
sxx
syy

�
�
�
a1
a2

�
T �5�

where exx and eyy denote the principal strain components, E1 and E2 the major Young's moduli, a1 and
a2 the coe�cients of thermal expansion, and the two Poisson's ratios, n12 and n21 are related by

n21E1 � n12E2 �6�

The relationship given by Eq. (5) can be rewritten as�
sxx
syy

�
� �A�

�
exx
eyy

�
ÿ �A�

�
a1
a2

�
T �7�

where the sti�ness matrix A is given by,

�A� �

26664
E1

1ÿ n12n21
n12E2

1ÿ n12n21
n12E2

1ÿ n12n21
E2

1ÿ n12n21

37775 �8�

As shown in Fig. 3(a), the inclusion is subjected to the following uniform surface tractionsÿ
Fx, Fy

� � �px=Ri, qy=Ri � �9�

The equations of equilibrium and strain compatibility can be expressed as

sI
abtI � sabt� sR

abtR �10�

eI
ab � eab � eR

ab �11�

where the Greek subscripts a and b stand for x or y, and parameters pertaining to the reinforcement
and the inclusion are distinguished, respectively, by subscript or superscript R and I; symbols carrying
no such label pertain to the plate. The inclusion thickness tI can be chosen arbitrarily, but it will prove
advantageous in the present context to choose
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tI � t �12�
so that the force continuity given by Eq. (16) becomes stress continuity (Rose, 1981).

Since Eq. (10) must hold for arbitrary exx, eyy and T, the following relations can be obtained

�AI � � �A� � tR
t
�AR � �13�

�
aI
1

aI
2

�
� �C I ��A�

�
a1
a2

�
� tR

t
�C I ��AR �

�
aR
1

aR
2

�
�14�

where

�C I � � �AI �ÿ1�

266664
1

E I
1

ÿnI
12

E I
1

ÿnI
21

E I
2

1

E I
2

377775 �15�

It is seen that the sti�ness of the equivalent inclusion is identical to that obtained by Rose (1981). It is
interesting to note that, however, the thermal expansion coe�cients of the equivalent inclusion depend
on the sti�ness of the reinforcement and the plate, in addition to the respective expansion coe�cients.

4. In®nite plate reinforced with a circular patch

Having determined the elastic properties and the thermal expansion coe�cients of the equivalent
inclusion, we can now analyse the thermal stresses in a circular patch bonded on to an in®nite plate. To
do this, the inclusion is ®rst cut out from the plate and unknown tractions are applied to the outer edge
of the inclusion and the boundary of the hole. The purpose of this boundary traction is to close the
`gap' between the hole and the inclusion.

Assuming that the reinforced region can be replaced with an equivalent inclusion without altering the
stress or displacement both in the inner region and the outer region, the problem reduces to ®nding the
stresses being transmitted across the inclusion/plate interface. Evidently the continuity of (a) the
tractions across the inclusion/plate interface and (b) the displacement along the interface must be
maintained. Mathematically these two conditions can be expressed as (Rose, 1981)

F I
a

ÿ
r4Rÿi

� � Fa
ÿ
r4R�i

� �16�

uI
a

ÿ
r4Rÿi

� � ua
ÿ
r4R�i

� �17�

where the traction Fa is de®ned as Fa � ÿtsabnb and sab (Greek subscripts a and b stand for x and y )
denote the stresses, and na � �x=Ri, y=Ri� denote the components of the outward vector normal to the
inclusion boundary. The usual convention that repeated Greek subscripts imply a summation applies.
Because the displacement uI

a and ua are dependent on the surface tractions across the inclusion/plate
interface, the two equations (16) and (17) are coupled. However, as will be shown later, a unique
solution of the surface tractions can be derived which satisfy exactly the above conditions of force and
displacement continuity.

To perform the matching of the displacements across the interface between the inclusion and the
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plate, the solutions of three sub-problems are required. These are the solutions corresponding to (1)
circular orthotropic inclusion subjected to a boundary traction and uniform temperature change, (2) a
plate with a circular hole subjected to internal surface traction and (3) a plate with a circular hole
subjected to non-uniform temperature change given by Eq. (4).

4.1. Orthotropic inclusion subjected to traction and temperature loading

Referring to Fig. 3(a), the displacements at a generic point (x, y ) on the boundary of the inclusion
that is subjected to the surface tractions given by Eq. (9) and a uniform temperature change of ÿTi are(

uI
x

uI
y

)
�
(
eI
xxx
eI
yyy

)
�18�

where(
eI
xx

eI
yy

)
� �C I �

�
p
q

�
�
�
aI
1

aI
2

�
� ÿ Ti � �19�

Fig. 3. Loading on the equivalent inclusion and the circular hole; (a) inclusion in a uniform stress state, (b) a circular hole subjected

to internal surface loading.
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It can be seen that the displacement components ux and uy are, respectively, proportional to the
coordinate x or y, corresponding to a uniform strain ®eld. As will be seen later, this feature is essential
to the matching of the displacement along the interface between the inclusion and the plate.

4.2. Internal loading of a circular hole in an in®nite plate

This sub-problem is that of a circular hole in an in®nite plate subjected to the following internal
loading along the hole boundary,

srr ÿ itry � p� q

2
� pÿ q

2
e2iy �20�

where i represents
�������ÿ1p
: The radial and shear tractions are illustrated in Fig. 3(b) and (c). The non-

uniform nature of the boundary conditions means that the problem is not axisymmetric. To solve this
problem, we will adopt the complex potential method of Muskhelishvili (1953). Stresses and
displacements are expressed in terms of two complex potentials, f and c,

sxx � syy � 4Re
�
f 0
� �21�

syy ÿ sxx � i2txy � 2
ÿ
�zf 00 � c 0

� �22�

2m
ÿ
ux � iuy

� � 3ÿ n
1� n

fÿ z �f
0 ÿ �c �23�

Writing w � eiy, the boundary condition (20) becomes,

f�w� � w �f
0��w� � �c��w� � f�w� �24�

where the forcing term f �w� can be obtained by integration,

f�w� � Ri

�
p

2

ÿ
w� wÿ1

�
� q

2

ÿ
wÿ wÿ1

��
�25�

The expressions for the two complex potentials can now be derived using the contour integral method
(Timoshenko and Goodier, 1970, pp. 206±214). Omitting the details of derivation, the complex
potentials are,

f�z� � R2
i

2z
�qÿ p� �26�

c�z� � R2
i

2z

�
�p� q� � R2

i

z2
�qÿ p�

�
�27�

Consequently, the displacements at a generic point along the hole boundary become, noting that
x � Ri cos y, y � Ri sin y,

u pq
x � ÿ

x

E

�
2pÿ �1ÿ n�q� �28a�

C.H. Wang et al. / International Journal of Solids and Structures 37 (2000) 4577±45994584



u pq
y � ÿ

y

E

�
2qÿ �1ÿ n�p� �28b�

where the superscript pq is used to distinguish the displacement induced by the surface traction given by
Eq. (20). Again, it is noted that the displacement components ux and uy are, respectively, proportional
to the coordinate x or y.

4.3. Steady-state thermal analysis of an in®nite plate with a circular hole

The third sub-problem is to determine the displacement ®eld in an in®nite plate containing a hole that
is subjected to the non-uniform temperature change given by Eq. (4). As expected, due to the non-
uniform temperature distribution outside the hole, stresses and displacement will develop in the plate.
Since the temperature ®eld is axisymmetric, the analysis can be considerably simpli®ed. In particular, the
general solutions of the radial displacement and the radial stress can be expressed as (Timoshenko and
Goodier, 1970),

uC
r �r� �

�1� n�a
r

�r
Ri

T�r�r dr� c1r� c2
r

�29�

sC
rr�r� � ÿ

Ea
r2

�r
Ri

T�r�r dr� E

1ÿ n2

�
c1�1� n� ÿ c2�1ÿ n�

r2

�
�30�

where the superscript C is used to denote the displacement induced by cooling. The temperature T(r ) is
given by Eq. (4). The two parameters, c1 and c2, are integration constants yet to be determined from the
following boundary conditions,

srr�r � Ri � � 0 �31�

srr�r41� � 0 �32�
from which the two integral constants c1 and c2 can be obtained,

c1 � ÿ1ÿ n
2

aTo �33�

c2 � ÿ1� n
2

aToR
2
i �34�

Therefore, the radial displacement at the inner radius can be expressed as

uC
r � ÿoTiRi, Ti > 0 �35�

where o � aTo=Ti: Consequently, the x- and y-displacement components are(
uC
x

uC
y

)
� ÿoTi

�
x
y

�
�36�

It can be seen that the displacement components ux and uy are, respectively, proportional to the
coordinate x or y, exhibiting the same behaviour as the displacements in the equivalent inclusion and
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the displacements corresponding to the internally loaded hole. Consequently, an exact matching in
displacements across the inclusion/plate interface can now be guaranteed.

4.4. Thermal residual stresses

With the solutions of the above three sub-problems being fully determined, we can now proceed to
perform the displacement matching, as the condition of force continuity (16) is already satis®ed. The
displacement continuity (17) can now be expressed as(

uI
x

uI
y

)
�
�
u pq
x

u pq
y

�
�
(
uC
x

uC
y

)
�37�

which yields, noting Eqs. (18), (28a), (28b) and (36)

pB11 � qB12 �
ÿ
aI
1 ÿ o

�� ÿ Ti � � 0 �38a�

pB21 � qB22 �
ÿ
aI
2 ÿ o

�� ÿ Ti � � 0 �38b�

where

B11 � 1

E I
1

� 2

E
�39a�

B12 � B21 � ÿnI
12

E I
1

ÿ 1ÿ n
E

�39b�

B22 � 1

E I
2

� 2

E
�39c�

Consequently, the unknown inclusion stresses p and q are given by

p �
ÿ
aI
1 ÿ o

�
B22 ÿ

ÿ
aI
2 ÿ o

�
B12

B11B22 ÿ �B12 �2
Ti �40a�

q �
ÿ
aI
2 ÿ o

�
B11 ÿ

ÿ
aI
1 ÿ o

�
B21

B11B22 ÿ �B12 �2
Ti �40b�

With the strains in the reinforcement and the plate being equal to the strain in the inclusion, which is
given by Eq. (19), the stresses in the reinforcement and the plate lying under the reinforcement can be
evaluated by�

sxx
syy

�
� �A�

(
eI
xx � aTi

eI
yy � aTi

)
�41�
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(
sR
xx

sR
yy

)
� �AR �

(
eI
xx � aR

1Ti

eI
yy � aR

2Ti

)
�42�

This furnishes the exact solutions of the thermal stresses in the both the plate and the reinforcement.
Validity of the present theory will be demonstrated in Section 6 by comparing with detailed ®nite
element results obtained for a typical reinforcement over an isotropic plate.

5. In¯uence of ®nite size

The solution presented in the previous section applies strictly for an in®nite plate. In practice,
however, structures to be reinforced may be ®nite in size. For instance, the size of representative
specimens that are widely used in laboratory studies (Baker, 1988) is often comparable to the size of the
reinforcement. In this case, the previous solutions may need to be modi®ed to incorporate the size e�ect
on the residual thermal stress.

Due to the ®nite size of the plate, the stresses in the inclusion are no longer uniform. Although the
problem could be formulated using the `stretched coordinate' method by Lekhnitskii (1963), the analysis
becomes rather unwieldy, as the solutions need to be represented by in®nite series. For simplicity, here
we will present an approximate solution, whose accuracy will be assessed both analytically and by
comparing with ®nite element results.

It will prove useful to consider the problem of circular patch on a concentric circular plate, as shown
in Fig. 4. For simplicity, let us assume that the annulus is constrained at radius Ro by a continuous
distribution of springs according to the following relation,

srr�r � Ro� � ÿkEur�r � Ro� �43�
It can be shown from Eqs. (28a) and (28b) that with the following spring sti�ness k, the in®nite plate
can be recovered as a special case,

k � 1

�1� n�Ro

�44�

Fig. 4. Spring representation for simulating ®nite size e�ect.
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Furthermore, the cases of free edge and a clamped edge r � Ro can be recovered by setting k � 0 and
k41, respectively.

While the properties of the equivalent inclusion remain the same as those obtained in Section 3, the
solutions pertaining to the thermal loading and the internal loading need to be modi®ed to account for
the ®nite size e�ect. In this case, the two auxiliary sub- problems need to be re-analysed to take into
account of the ®nite size.

5.1. Internally loaded annulus

Let us consider an annulus with an inner radius and outer radius of Ri and Ro, respectively. The
annulus is loaded at its inner radius by the surface traction (Eq. (20)) while its outer radius is
constrained. To facilitate the following analysis, the surface loading is decomposed into a uniform radial
loading and a `shear' loading,

srr ÿ itry � p� q

2
�45�

srr ÿ itry � pÿ q

2
e2iy �46�

The ®rst component represents a uniform radial pressure on the hole, whereas the second mode
represents a shear stress state: sxx � ÿsyy � �pÿ q�=2: Due to the axisymmetric nature of the uniform
radial loading, a closed-form solution can be derived (details shown below). The `shear' loading problem
can be analysed by expanding the complex potentials in a Laurent series (Muskhelishvili, 1953, pp. 218±
223).

The problem of an annulus with constraint along its outer edge and subjected to a uniform radial
pressure on its inner edge can be analysed using the known results (Timoshenko and Goodier, 1970).
The appropriate boundary conditions are

srr�r � Ri � � �p� q�
2

�47�

srr�r � Ro� � ÿkEur�r � Ro� �48�
After some algebra manipulations, the following solution can be derived for displacement at the inner
edge of the hole,

ur�r � Ri � � ÿp� q

2

�1� n�Ri

E
l �49�

where

l � 1� n� b�1ÿ n�R2
i =R

2
o

�1� n��1ÿ bR2
i =R

2
o �

, b � 1ÿ �1� n�kRo

1� �1ÿ n�kRo

�50�

To analyse the problem of an annulus subjected to the surface traction (Eq. (46)) on its inner radius, the
boundary condition is written in terms of complex Fourier series,

srr ÿ itry �
X1
ÿ1

Akeiky �51�
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Comparing with Eq. (46), we have

Ak �
8<:

pÿ q

2
k � 2

0 k 6�2
: �52�

The two complex potentials f�z� and c�z� are expanded in terms of Laurent series,

f�z� �
X1
ÿ1

ak
k� 1

zk�1 �53�

c�z� �
X1
ÿ1

bk
k� 1

zk�1 �54�

According to Muskhelishvili (1953), the coe�cients ak and bk can be determined as following:

ak �

8>>>>>>>><>>>>>>>>:

R6
o ÿ R6

i

3
ÿ
R2

o ÿ R2
i

�2�ÿR6
o ÿ R6

i

�ÿ
Rÿ2o ÿ Rÿ2i

� �B2, k � ÿ2

ÿ 3
ÿ
R2

o ÿ R2
i

�
3
ÿ
R2

o ÿ R2
i

�2�ÿR6
o ÿ R6

i

�ÿ
Rÿ2o ÿ Rÿ2i

�B2, k � 2

0, k6� ÿ 2,2

�55�

bk �
8<: 3aÿ2R2

i � a2R
6
i , k � ÿ4

�aÿ2Rÿ2i ÿ a2R
2
i ÿ A2, k � 0

0, k6� ÿ 4, 0

�56�

B2 � �B2 � ÿpÿ q

2
�57�

Therefore, the complex potentials become

f�z� � ÿaÿ2
z
� a2z

3

3
�58�

c�z� � b0zÿ bÿ4
3z3

�59�

According to Eq. (23), the displacements at the inner radius r � Ri are (using Eq. (6)),

u pÿq
x � iu pÿq

y � ÿpÿ q

2

3ÿ n
E

ZRi

�
eÿiy ÿ re3iy

�
�60�

where the superscript p ÿ q is used to denote displacement components pertaining to the `shear' loading,
and
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Z � 3ÿ n� �7� 3n�R2
i =R

2
o � �1ÿ 3n�R4

i =R
4
o � �1� n�R6

i =R
6
o

�3ÿ n�ÿ1ÿ R2
i =R

2
o

�3 �61�

r � 3�1� n�ÿ1ÿ R2
i =R

2
o

�
R4

i =R
4
o

�3ÿ n�Z�1ÿ 4R2
i =R

2
o � 6R4

i =R
4
o ÿ 4R6

i =R
6
o � R8

i =R
8
o

� �62�

It is worth noting that, due to the presence of e3iy in Eq. (60), the displacements are no longer
proportional to the coordinates x and y. This implies that the postulation of a uniform stress state in
the inclusion will no longer satisfy the displacement continuity condition at the inclusion/plate interface,
for the displacements at the hole radius induced by the temperature change (detailed later) are
proportional to the coordinates x and y. Therefore, strictly speaking, the most important feature of
ellipsoidal inclusion that the stresses being uniform inside the inclusion is lost, due to the ®nite size of
the plate. Exact solutions of the problem would then become unwieldy, involving the analysis of an
orthotropic disk subjected to non-uniform surface tractions.

Nevertheless, it is interesting to observe that the parameter r in Eq. (60) is generally very small
provided that the outer radius of the annulus is reasonably greater than its inner radius. A graphical
representation of the parameter r plotted against the ratio of outer radius to inner radius is shown in
Fig. 5, which is indicative of the error associated with neglecting the higher order term. Maximum error
occurs in the limiting case when Ro approaches Ri, i.e., when the width of the annulus approaches zero.
Even in this case, the parameter r approaches the following limit,

lim
Ro4Ri

r � 1� n
4

�63�

It is also clear from Fig. 5 that provided the outer radius of the plate is moderately greater than the
patch size, i.e., Ro=Rir3, the error incurred by dropping the higher order term e3iy from Eq. (60) will
indeed be very small (less than 1%). Furthermore, since the displacement due to `shear' loading solution
forms only part of the total displacement, the overall error would be even smaller.

Fig. 5. E�ect of annulus size on the displacement at inner radius due to `shear' loading.
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By neglecting the higher order term, approximate solutions of the total displacement at the inner
radius of the annulus can be obtained by combining Eqs. (49) and (60), yielding,

�
u pq
x

u pq
y

�
�

8>><>>:
ÿx

E
�g1pÿ g2q�

ÿ y

E
� ÿ g2p� g1q�

9>>=>>; �64�

where

g1 �
�3ÿ n�Z� �1� n�l

2
�65�

g2 �
�3ÿ n�Zÿ �1� n�l

2
�66�

In the limiting case that the outer radius of the annulus is far greater than the inner radius, i.e.,
Ri=Ro40, it is easy to verify that both Z and l approach unity. Consequently, the above solution
recovers, as a special case, that corresponding to the internally loaded hole in an in®nite plate (see Eqs.
(28a) and (28b)).

5.2. Thermal loading of an annulus

The second sub-problem to be analysed is the displacement ®eld in an annulus due to a steady-state,
non-uniform, temperature change described by Eq. (4). Much of the method outlined in Section 4.2 can
be followed, except that the relevant boundary conditions in the present case are,

srr � 0, r � Ri �67�

srr � ÿkEur, r � Ro �68�
After some lengthy algebra, the displacement at the inner radius is determined,

ur�r � Ri � � ÿeTiRi �69�
where

e � ab
1ÿ bR2

i =R
2
o

(
To=Ti ÿ R 2

i =R
2
o ÿ

ÿ
1ÿ R2

i =R
2
o

��1ÿ To=Ti �
2 ln�Ri=Ro �

)
�70�

with

b � 1ÿ �1� n�kRo

1� �1ÿ n�kRo

�71�

Therefore, the displacement at a generic point (x, y ) on the hole edge due to the non-uniform thermal
loading is(

uT
x

uT
y

)
� ÿ

�
x
y

�
eTi �72�
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As expected, both the displacement x- and y-displacements are proportional to the coordinates x and y.
It can be shown that the following condition holds, provided that k is given by Eq. (44),

lim
Ri=Ro40

e � 0 �73�

which con®rms that the above solution recovers, as a special case, that corresponding to an in®nite plate
with To=Ti � 0:

5.3. Thermal stresses

Having solved the two sub-problems, we can now perform the displacement matching to determine
the unknown boundary tractions p and q. The condition of displacement continuity becomes,(

uI
x

uI
y

)
�
�
u pq
x

u pq
y

�
�
(
uC
x

uC
y

)
�74�

which leads to

pD11 � qD12 �
ÿ
aI
1 ÿ e

�� ÿ Ti � � 0 �75a�

pD21 � qD22 �
ÿ
aI
2 ÿ e

�� ÿ Ti � � 0 �75b�

where

D11 � 1

E I
1

� g1
E

�76a�

D12 � D21 � ÿnI
12

E I
1

ÿ g2
E

�76b�

D22 � 1

E I
2

� g1
E

�76c�

Therefore,

p �
ÿ
aI
1 ÿ e

�
D22 ÿ

ÿ
aI
2 ÿ e

�
D12

D11D22 ÿ �D12 �2
Ti �77a�

q �
ÿ
aI
2 ÿ e

�
D11 ÿ

ÿ
aI
1 ÿ e

�
D21

D11D22 ÿ �D12 �2
Ti �77b�

which furnishes the solutions for the unknown tractions p and q. The strains in the inclusion can be
obtained by Eq. (19), and the stresses in the reinforcement and the plate are given by Eqs. (41) and (42).
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6. Comparison with ®nite element results

To validate the present theory and to examine the accuracy of the approximate solution for ®nite size
plate, a detailed ®nite element analysis is carried out for both an isotropic patch and an orthotropic
patch, simulating a cross-ply laminate composite patch. The properties and dimensions of the isotropic
patch and the orthotropic patch are summarised in Tables 1 and 2. The ratios of the outer radius to
inner radius, Ro=Ri, will be varied to investigate the size e�ect.

An example of ®nite element mesh employed is shown in Fig. 6. Due to symmetry, only a quarter of
the problem is modelled using eight node quadrilateral elements, using the generalised plane stress
formulation. With the reinforced region, elements pertaining to the patch and the plate share the same
set of nodes, simulating a rigid bond between the reinforcement and the plate. Since the thermal stress
due to the initial heating of the reinforcement region is well known, emphasis will be placed on the
second step of adhesive bonding: cooling of the cured patch. The superposition of stresses determined
from these two steps will yield the ®nal residual thermal stresses in the plate and the reinforcement. The
temperature distribution for the cooling is prescribed according to Eq. (4). As shown in Fig. 7, in the
case of isotropic reinforcement, the closed-form solution is in excellent agreement with the ®nite element
results. In fact, the di�erence between the analytical solutions and the ®nite element results is less than
0.1% for cases being examined.

To examine the in¯uences of ®nite size on the uniformity of the strains within the reinforced region,
strain distributions corresponding to the case of a circular orthotropic reinforcement over a circular
plate are shown in Fig. 8. The outer edge of the plate is clamped and the ratio Ro=Ri is equal to 2.
Despite the ®nite size e�ect, the strains within the reinforced region are nearly constant. Results
corresponding to greater values of Ro=Ri, although not shown here for brevity, con®rm that the
uniformity of the strains within the reinforced region increases as Ro=Ri increases.

For a typical orthotropic reinforcement whose properties and dimensions are listed in Table 2,
comparison of the stresses in the plate and the reinforcement as obtained using the ®nite element
method and the present solutions are shown in Fig. 9. As in the case of isotropic reinforcement, there is
a very good agreement between the analytical solution and the ®nite element results for all the cases
being investigated. For comparison purposes, the predictions based on an equivalent isotropic
reinforcement, which takes the major properties of the orthotropic reinforcement, are also shown in
Fig. 9.

It can be shown that for the special case of isotropic patch, the residual thermal stress simpli®es to

Table 1

Properties and dimensions of isotropic reinforcement

Material Young's modulus (GPa) Poisson's ratio Thickness (mm) Thermal coe�cient

Plate 71 0.3 1.0 23� 10ÿ6

Reinforcement 156 0.3 0.5 6.24� 10ÿ6

Table 2

Properties and dimensions of orthotropic reinforcement

Material Young's modulus (GPa) Poisson's ratio Thickness (mm) Thermal coe�cient

Plate 71 0.3 3.0 23� 10ÿ6

Reinforcement E1 = 156, E2 = 29.7 n21 � 0:1097, n12 � 0:5762 1.5 a1 � 6:24� 10ÿ6, a2 � 16:96� 10ÿ6
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become

sT
0 � aETi

�1ÿ nR ��1ÿ e=a� � �1ÿ aR=a��1� n�Sl
�1ÿ nR ��1� l� lnÿ n� � �1ÿ n2 �Sl �78�

where S � ERtR=EPtP, and the parameter e is given by Eq. (70). For an in®nite patch with Ri=Ro40
and To � 0, one can further show that the residual thermal stress reduces to, noting l � 1 and e � 0,

sT
0 � aETi

1ÿ nR � �1ÿ aR=a��1� n�S
2�1ÿ nR� � �1ÿ n2�S �79�

It is evident that in the special case of isotropic patch, the ®nal solution is dramatically simpli®ed,
providing a simple estimate of the residual stress in the plate. It is worth noting that Eq. (79) corrects an
error in an earlier solution by Rose (1988). As illustrated in Fig. 9, as far as the stress in the plate is
concerned, the isotropic patch assumption does provide a reasonable estimate of the stress in the plate
parallel to the ®bre direction of the reinforcement. In the context of composite patching, since the ®bre
direction of the patch is normally aligned perpendicular to the crack being repaired, the x-component of
stress is the residual stress of most concern. By contrast, the stresses in the reinforcement are poorly
predicted based on the isotropic reinforcement assumption.

To illustrate the in¯uence of the outer boundary of the circular plate on the thermal stresses, Fig. 10
shows the comparison between the theoretical solutions and ®nite element results of the thermal stresses
induced by cooling. When compared with the results with those corresponding to the case clamped edge,
there seems to be an even better correlation between the theoretical calculations and the ®nite element
results. Furthermore, the thermal stresses in the plate and the reinforcement increase as the radius of the
plate increases, contrary to the case of clamped edge. It is expected that in the limiting case of the
radius of the plate being far greater than the patch size, solutions will converge to those corresponding
to an in®nite plate being reinforced with a circular plate.

Frequently a simple solution has been used in the literature to estimate the thermal residual stress
present in a patched specimen employed in laboratory study of composite repairs (Eq. 6.1a, Baker,
1988). In this case the specimen is normally heated and cooled uniformly in an oven during curing.
However, in deriving the thermal stress in the plate, the thermal contraction of the region outside the

Fig. 6. Finite element mesh of a quarter model.
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patch was neglected. Furthermore, by idealising the problem as a one-dimensional one, the lateral
constraint present in a real specimen was also ignored. Based on the preceding results, the thermal
residual stress pertaining to a patched specimen can be derived, assuming the patch can be idealised as
isotropic. This can be achieved by setting To � Ti, Ri=Ro40, and k � 0, leading to

l � 1, b � 1, e � a �80�

Fig. 7. Residual thermal stresses for isotropic patch: (a) the plate and (b) the reinforcement.
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Consequently, the thermal residual stress upon cooling the specimen from a temperature of Ti to the
ambient temperature is

sT
0 � aETi

�1� n��1ÿ aR=a�S
2�1ÿ nR � �

ÿ
1ÿ n2

R

�
S

�81�

which provides an improved solution for the thermal residual stress in a patched specimen being cured
in a uniform temperature ®eld. For a typical balanced repair with S � 1 and n � nR � 0:3, the above
equation yields a thermal stress about 12.6% higher than that reported in the literature (Baker, 1988).

Fig. 8. Finite size orthotropic patch distributions of (a) the radial strain and (b) the hoop strain.
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However, for orthotropic reinforcements, the solutions derived assuming that the patch being isotropic
would generally overestimate the thermal residual stress in the plate, as indicated in Fig. 9. Therefore,
the thermal stress determined using the present isotropic solution should be regarded as approximate
upper bound only.

Fig. 9. A circular patch over a concentric plate with outer edge being clamped; cooling induced stresses in (a) the plate and (b) the

orthotropic reinforcement.
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7. Conclusions

Based on an inclusion analogy, an exact solution has been obtained for the thermal stresses in a
circular orthotropic composite reinforcement over an in®nite isotropic plate. The validity of the
analytical solutions has been con®rmed by comparisons with ®nite element results. To quantify the size

Fig. 10. A free edge circular plate reinforced with a concentric reinforcement; cooling induced stresses in (a) the plate and (b) the

orthotropic reinforcement.
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e�ect associated with repairing ®nite size structures, approximate solutions have also been derived,
which are shown to be in close agreement with ®nite element results. These solutions provide a
convenient means for the design and analysis of bonded repairs in relation to the thermal stresses.
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